Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(1): 641-656, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548390

RESUMO

Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.


Assuntos
Doença de Huntington , Tomografia por Emissão de Pósitrons , Animais , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
2.
J Med Chem ; 64(16): 12003-12021, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34351166

RESUMO

The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.


Assuntos
Encéfalo/diagnóstico por imagem , Compostos Heterocíclicos com 3 Anéis/química , Proteína Huntingtina/metabolismo , Agregados Proteicos/fisiologia , Piridinas/química , Compostos Radiofarmacêuticos/química , Doença de Alzheimer , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Feminino , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Piridinas/síntese química , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade
3.
J Med Chem ; 63(15): 8608-8633, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32662649

RESUMO

Mutant huntingtin (mHTT) protein carrying the elongated N-terminal polyglutamine (polyQ) tract misfolds and forms protein aggregates characteristic of Huntington's disease (HD) pathology. A high-affinity ligand specific for mHTT aggregates could serve as a positron emission tomography (PET) imaging biomarker for HD therapeutic development and disease progression. To identify such compounds with binding affinity for polyQ aggregates, we embarked on systematic structural activity studies; lead optimization of aggregate-binding affinity, unbound fractions in brain, permeability, and low efflux culminated in the discovery of compound 1, which exhibited target engagement in autoradiography (ARG) studies in brain slices from HD mouse models and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates (NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for imaging of mHTT aggregates. [11C]-1R is now being advanced to human trials as a first-in-class HD PET radiotracer.


Assuntos
Proteína Huntingtina/análise , Doença de Huntington/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Agregação Patológica de Proteínas/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Cães , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Ligantes , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Compostos Radiofarmacêuticos/análise , Ratos Sprague-Dawley
4.
Expert Opin Drug Discov ; 14(12): 1313-1327, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31538500

RESUMO

Introduction: Prediction of human absorption, distribution, metabolism, and excretion (ADME) properties, therapeutic dose and exposure has become an integral part of compound optimization in discovery. Incorporation of drug metabolism and pharmacokinetics into discovery projects has largely tempered historical drug failure due to sub-optimal ADME. In the current era, inadequate safety and efficacy are leading culprits for attrition; both of which are dependent upon drug exposure. Therefore, prediction of human pharmacokinetics (PK) and dose are core components of de-risking strategies in discovery. Areas covered: The authors provide an overview of human dose prediction methods and present a toolbox of PK parameter prediction models with a proposed framework for a consensus approach valid throughout the discovery value chain. Mechanistic considerations and indicators for their application are discussed which may impact the dose prediction approach. Examples are provided to illustrate how implementation of the proposed strategy throughout discovery can assist project progression. Expert opinion: Anticipation of human ADME, therapeutic dose and exposure must be deliberated throughout drug discovery from virtual/initial synthesis where key properties are considered and similar molecules ranked, into development where advanced compounds can be subject to prediction with greater mechanistic understanding and data-driven model selection.


Assuntos
Descoberta de Drogas/métodos , Modelos Biológicos , Preparações Farmacêuticas/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Humanos , Preparações Farmacêuticas/metabolismo , Farmacocinética
5.
Xenobiotica ; 44(7): 657-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24417751

RESUMO

1. Optimization of renal clearance is a complex balance between passive and active processes mediated by renal transporters. This work aimed to characterize the interaction of a series of compounds with rat and human organic anion transporters (OATs) and develop quantitative structure-activity relationships (QSARs) to optimize renal clearance. 2. In vitro inhibition assays were established for human OAT1 and rat Oat3 and rat in vivo renal clearance was obtained. Statistically significant quantitative relationships were explored between the compounds' physical properties, their affinity for OAT1 and oat3 and the inter-relationship with unbound renal clearance (URC) in rat. 3. Many of the compounds were actively secreted and in vitro analysis demonstrated that these were ligands for rat and human OAT transporters (IC50 values ranging from <1 to >100 µM). Application of resultant QSAR models reduced renal clearance in the rat from 24 to <0.1 ml/min/kg. Data analysis indicated that the properties associated with increasing affinity at OATs are the same as those associated with reducing URC but orthogonal in nature. 4. This study has demonstrated that OAT inhibition data and QSAR models can be successfully used to optimize rat renal clearance in vivo and provide confidence of translation to humans.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Rim/efeitos dos fármacos , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Eliminação Renal/efeitos dos fármacos , Animais , Desenho de Fármacos , Células HEK293/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Rim/metabolismo , Masculino , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Farmacocinética , Relação Quantitativa Estrutura-Atividade , Ratos
6.
Drug Metab Dispos ; 35(6): 859-65, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17344337

RESUMO

The wealth of information that has emerged in recent years detailing the substrate specificity of hepatic transporters necessitates an investigation into their potential role in drug elimination. Therefore, an assay in which the loss of parent compound from the incubation medium into hepatocytes ("media loss" assay) was developed to assess the impact of hepatic uptake on unbound drug intrinsic clearance in vivo (CL(int ub in vivo)). Studies using conventional hepatocyte incubations for a subset of 36 AstraZeneca new chemical entities (NCEs) resulted in a poor projection of CL(int ub in vivo) (r2 = 0.25, p = 0.002, average fold error = 57). This significant underestimation of CL(int ub in vivo) suggested that metabolism was not the dominant clearance mechanism for the majority of compounds examined. However, CL(int ub in vivo) was described well for this dataset using an initial compound "disappearance" CL(int) obtained from media loss assays (r2 = 0.72, p = 6.3 x 10(-11), average fold error = 3). Subsequent studies, using this method for the same 36 NCEs, suggested that the active uptake into human hepatocytes was generally slower (3-fold on average) than that observed with rat hepatocytes. The accurate prediction of human CL(int ub in vivo) (within 4-fold) for the marketed drug transporter substrates montelukast, bosentan, atorvastatin, and pravastatin confirmed further the utility of this assay. This work has described a simple method, amenable for use within a drug discovery setting, for predicting the in vivo clearance of drugs with significant hepatic uptake.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Animais , Células Cultivadas , Humanos , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Farmacocinética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...